Postgres-R (8) Architecture

Markus Wanner <markus@bluegap.ch>

January 2009

Abstract

This document describes the design and architecture of
Postgres-R (8), a multi-master replication system for Post-
gres. It is an extension of the work presented by [KA00]
and incorporates enhancements from the subsequent paper
Postgres-R (SI) by [WKOS]. Further inspiration originates
from Slony-II of Neil Conway and Gavin Sherry and from
conversation with other fellow hackers of Postgres.

Please note that this paper describes the underlying con-
cept and does not necessarily reflect the status of the pro-
totype implementation, which is available from http://
WWW.postgres-r.org.

The reader is supposed to be familiar with Postgres in-
ternals, especially with Multi-Version Concurrency Control

(MVCC) and transaction isolation issues.

1 Design Goals

Database replication promises to solve a broad range of very
different problems. Possible use cases vary in number of
nodes, type of transactional load, throughput and latency
of the interconnect and (perhaps most importantly) user ex-
pectations and requirements. This section outlines the de-
sign goal and limitations of the Postgres-R approach, as pre-

sented in this paper.

e Multiple nodes with independent memory and stor-
age are connected via a mostly reliable and preferably
low latency interconnect. This cluster of nodes forms
adistributed database system, which looks like one big

database system to the database users.

Postgres-R is a pure update-everywhere (or multi-
master) replication solution, which allows every node
of the cluster to process writing transactions at any

time (in the absence of failures).

To ensure high availability, Postgres-R must be tol-
erant to various failure cases, including single node
crashes, network congestion, temporary network out-
ages as well as permanent network failures. Conse-

quences of these failures must be clear and predictable.

Different applications and transactions require differ-
ent trade offs between commit latency, visibility and
durability. However, we do not currently consider lazy
replication, but instead focus on conflict-free replica-

tion using fully synchronous or eager replication.

ACID properties of the database system must be main-
tained by default to ensure application transparency.
For better performance Postgres-R optionally offers
compromises, which leads to a behavior slightly differ-
ent from a single node system and possibly violating

ACID properties.

The nodes of a Postgres-R cluster may run on hardware
g y
platforms and operating systems and may use different

Postgres major versions underneath.

After a full cluster outage the distributed system must
be able to recover into a consistent state again. The

transaction durability guarantees must be respected.

Initialization of new nodes and recovery of re-joining

nodes as well as full cluster restarts must be performed

http://www.postgres-r.org
http://www.postgres-r.org

automatically without requiring human intervention.

e All network communication (reliable multi-casting,
consensus protocols, split brain detection, etc.) is del-

egated to a group communication system.

o Integration into Postgres must be tight to benefit from

MVCC.

2 Architecture

2.1 Overview

Postgres-R extends Postgres in various areas. These exten-
sions can be split into modules or building blocks. Some of
them are very specific to replication, others can potentially
be used for other purposes as well. This first section pro-
vides an overview of Postgres-R from various angles. The
following sections will each describe such a module or build-

ing block of Postgres-R.

2.1.1 Processes on a node

Postgres features a multi-process architecture, where every
client connection is connected to exactly one so called back-
end process. A postmaster process controls these backends
and forks new backends as required. But there are also vari-
ous auxiliary processes which preform different background
tasks. As of version 8.3 the following permanent auxiliary
processes are running for a Postgres database system: an au-
tovacuum launcher, a background writer, a WAL writer, a
statistics collector and possibly also a WAL archiver. The
autovacuum launcher may request additional autovacuum
worker processes, which do the actual work of vacuuming a
database.

To take care of all communication requirements,
Postgres-R introduces an additional coordinator process’.
Similar to the autovacuum launcher, it may request

additional helper processes, which do the actual work?.
To communicate with other nodes Postgres-R relies on a
Group Communication System (GCS), which may be im-

plemented as its own daemon process or dynamically loaded

into the coordinator process from a library. Besides passing
messages between the helper backends and the communica-
tion system, the coordinator also keeps track of the state of
local processes and remote nodes. However, it must guaran-
tee short response times and may thus not perform lengthy

calculations.

2.1.2 Lifecycle of a replicated transaction

In distributed database system the client connects to one
of the nodes and its transaction is processed by a backend
process on that node. That's the origin backend and origin
node of the transaction. Read-only transactions need not
be replicated, so there is no difference to stand alone oper-
ation. Changes from writing transaction get collected into
change sets®, which are then replicated to the other nodes in
the cluster via the GCS

On the remote node the change set first arrives at the
coordinator process, which only forwards it to a helper
backend“to do the actual processing. To apply the change
set the helper backend needs to checks for conflicts with
concurrent transactions on the same node. Depending on
that check and on the agreed ordering of the transaction
with regard to other transactions, it then gets committed or

aborted.

1. In the original Postgres-R paper [KA00] the coordinator process
is referred to as the replication manager. To avoid confusion with the
Resource Manager (abbreviated RMGR as well) this process has been
renamed to coordinator.

2. It might make sense to merge the coordinator process added for
replication with the autovacuum launcher, as both processes are sim-
ilar in concept: they control worker processes.

3. Again, the original Postgres-R paper [KA00] used another term
for the serialized changes: writesets. The term has been altered be-
cause its meaning and function has changed as well

4. These helper backends have been referred to as remote backends,
because they apply transactions originating from remote nodes. How-
ever, they are in no way remote but reside on the same node as so called
local backends. In this paper the more general term helper backend is
used.

2.2 Inter-Node Communication

2.2.1 Services of the Group Communication System

Postgres-R delegates all of its inter-node communication to
a GCS, which provides the required abstracted services for
such a distributed system. For use with Postgres-R a GCS
must provide group membership services, failure detection,
reliable uni- and multi-cast messaging and a consensus pro-
tocol®. As part of the group membership service the GCS
must detect node and network failures and appropriately in-
form the remaining nodes.

Upon partitioning of the network the GCS must be able
to congruently decide on a majority of nodes to stay active.
To prevent split brain situations Postgres-R forces all other
nodes to leave the group. If there's no such majority par-
tition, the group becomes inactive which leads to an inter-
ruption of the replicated database system. In that case ad-
ministrator intervention is required to either fix the net-
work problem and thus reactivate the replication group or
to decide on a minority group to become the new replica-
tion group, in which case the administrator must take care
to prevent split brain situations.

Various approaches for implementing consensus and
atomic broadcast protocols have been studied. [DSU04]
provides classification of atomic broadcast protocols and a
theoretical comparison of around 55 different approaches.
For Postgres-R non-uniform total ordering within a closed
group is sufficient. Support for multiple, independent

groups might be beneficial for performance reasons.

2.2.2 Global Object Identifier (GOI)

Most of the names for databases, relations, tables, etc. can
be of varying size and are often longer than 4 bytes. To ab-
stract from these names and to keep the size of messages
small, Postgres-R does not send full names in every change
set. Instead the whole cluster of nodes agrees on a mapping
of objects identified by name to 32 bit globally unique ob-
ject identifiers (GOI). This also helps reducing the num-
ber of varying size elements to parse and thus simplifies the

structure Of messages.

New records are created on demand by requesting an
agreement from the GCS on an id for the next object to be
inserted. To prevent endless growth of this mapping each
node may also request removal of a record after it hasn't
been used for some time. These object identifiers are sup-
posed to change very rarely, so a timeout of several days be-
fore deleting an unused GOI should be reasonable in most
cases. The GOl is very similar to the object identifier (OID)
used by Postgres internally, but provides a mapping so that
these OIDs can differ between nodes and Postgres versions.
Note that not every object must have a GOI at every point
in time. Additionally, objects which do not have an OID in

Postgres may have a GOL for example the nodes of a cluster.

2.2.3 Global transaction identifiers (GID)

To refer to a transaction from a node, Postgres-R uses glob-
ally unique transaction identifiers. Postgres itself already
offers transaction identifier (XID) consisting of 32 bits.
Postgres-R prepends a unique node id given from the GCS
or mapped via the above GOI mechanism, resulting in a
64bit wide global transaction Identifier (GID). Wrapping
around of the per-node XIDs is not a problem, because
Postgres-R only needs to refer to recent transactions. Also
note that Postgres-R only compares GIDs for equality - or-

dering information is stored independently.

2.2.4 Transaction State Tracking

On every node a mapping between global and local trans-
action ids must be maintained, so that backends can trans-
late from GIDs to XIDs and back. To keep the adminis-
trative overhead as low as possible Postgres-R only stores
GIDs of transactions which are still in progress on at least

one node. Transactions which are known to be committed

S. Some GCS offer an atomic broadcast primitive which provides
totally ordered delivery of messages instead of a consensus protocol.
As shown in [CT96] this can be reduced to the consensus problem and
vice versa. For the remainder of this paper we concentrate on the con-
sensus abstraction, because it is more general and allows delivery of
payload data to the application before having reached consensus (op-
timistic delivery).

on all nodes are not of interest to the replication system any-
more. To keep track of each node's progress in applying re-
mote transactions the nodes regularly exchange information
about committed or aborted transactions.

From this information each node derives the latest trans-
action which is known to be globally committed (KGC).
However, a node may not drop a GID until it is sure it won't
be referenced anymore by any other node. Thus another
limit must be kept track of: the latest known globally dep-
recated transaction (KGD). This limit can be derived from
change sets received from other nodes, as each change set
carries the KGC of the origin node at time of creation. Al-
ternatively each node also sends its local KGC value with
the above mentioned transaction state exchange messages,
in case it didn't send a change set for a while. As these limits
are only required for cleaning up the transaction state infor-

mation, they are not time critical and can easily lag behind.

2.3 Collection of Transactional Changes

Changes performed by transactions must be transferred be-
tween the nodes via a network. This section describes the
contents and the serialized format of change set messages
and at which point in time during the execution of the orig-
inal transaction the collection of changes takes place.

2.3.1 Scope of Tuple Collection

To maintain consistency of data between the nodes it is suf-
ficient for Postgres-R to replicate only relational data. There
is no need to replicate changes to derived data such as in-
dices, statistics, free space maps, etc. because each repli-
cated node can maintain its own set of derived data based
on the relational data. To remain independent of the un-
derlying storage format, of the specific Postgres version and
of the CPU architecture used, Postgres-R does not need to
transfer any of that data either. Instead Postgres-R uses pri-
mary keys to uniquely identify tuples, which in turn means
that only relations with such a primary key can be repli-
cated. However, this restriction can easily be circumvented

by adding a hidden SERIAL attribute to relations which do

not have an application specific primary key.

Not only the common INSERT, UPDATE and
DELETE operations are considered to change tuples, but
also COPY FROM as well as row level locking operations
such as SELECT FOR UPDATE and SELECT FOR
SHARE. However, those row level locking operations are
only relevant in synchronous replication level and are not
part of a change set for eagerly replicated transactions, see
2.6. Changes of sequences are not part of a change set
cither, because these have different locking requirements,

see 2.7.1.

2.3.2 Time of Tuple Collection

On the origin backend changes must be collected just be-
fore they are effective for the local transaction within the
ExecInsert, ExecUpdate and ExecDelete functions,
50 as to be able to block before the change®is effective. The
collection of changes is independent of the cause for the
change and thus also captures changes from operations from

within stored procedures, triggers and rules.

2.3.3 Representing Tuple Changes

Based on the three basic types of operations Postgres-R
stores different information per inserted, updated or deleted
tuple. Each change set holds a collection of tuple changes
of the same type and from within the same subtransaction.
Both of these properties must be stored in the change set
header, together with the number of tuples included and the
current number of attributes per tuple.

For updates and deletes Postgres-R saves the (former) pri-
mary key attributes to identify the tuple to be changed as
well as the GID of the transaction which has last touched it
(from the tuple's xmin). The later is required for conflict de-
tection during application on remote nodes, see 2.5.1. The
primary key attributes are serialized without any additional

information, because they cannot be NULL.

6. While attribute data changes of the tuple are not visible to other
transactions due to MVCC, locking a tuple for updating or deletion is
immediately visible to other transactions.

For updates all changed attributes get serialized in addi-
tion to the primary key attributes which identify the tuple.
Note that upon a change of a primary key attribute, the se-
rialized tuple change information contains both variants of
these attributes: the old ones to identify the tuple as well as
the new ones within the list of changed attributes. To dis-
tinguish between changed and unchanged attributes, a bit-
mask stores two bits per attribute of a relation, resulting in
a maximum of four different ways an attribute can change:
unchanged, reset to NULL, set to a new value or set to a
new value derived from the old one and a given delta. The
fourth variant is an optimization for large attribute values,
which can safe network bandwidth in case of small changes
to large attributes.

To unify handling of inserts, those are treated as changes
against NULL. Unlike updates there is no need to store
a primary key to identify some pre-existing tuple to be
changed. The new primary key attributes are stored as part

of the normal attribute changes.

2.3.4 Representing Attribute Data

The bitmap field indicates how many attribute values need
to follow, because attributes which remained unchanged or
which have been reset to NULL are skipped. Postgres-R
stores attribute data in their binary representation using the
send and recv functions provided by Postgres. For fixed
size attributes no length information is required, whereas
for variable length attributes a length indicator is prepended
before the actual data, similar to VARLENA datums of
Postgres. Datums beyond a certain size threshold are trans-
mitted out-of-bound, resembling Postgres' TOAST mech-

anism.

2.4 Distributing Change Sets

All change sets are sent by reliably multi-casting them via the
GCS. This guarantees eventual delivery of the messages or
a failure notification in case of delivery failures. Unlike the
original Postgres-R approach we do not use atomic broad-

cast for a totally ordered delivery, but instead decouple the

ordering agreement and the change set payload transmis-
sion, which is known as optimistic delivery. The change
set payload may be delivered before the nodes of the cluster
reach an agreement on the ordering of the transaction, so
that Postgres-R can start applying its changes before having
received the orderingagreement, which benefits parallelism.

2.4.1 Timing and Client Confirmation

Change sets are sent at different times, depending on the
chosen replication level. In fully syrchronous mode the
change set needs to be sent before acquiring the row-level
lock necessary for the operation on a single tuple. Execution
of the transaction can only proceed after having received an
agreement from the GCS that the current transaction is the
next one to acquire the lock, see 2.6 for more details.

The eager replication level requires much fewer mes-
sages per transaction, ideally only one per transaction with
few changes. However, Postgres-R must respect an upper
boundary on the change set size, because some GCS en-
force such a limitation. Additionally it might make sense to
respect the network's MTU for performance reasons (pre-
venting fragmentation on lower levels). During long run-
ning transactions Postgres-R thus sends partial change sets
whenever reachinga certain maximum change set size. This
also allows early application of changes from long running
transactions on remote nodes and thus helps detecting con-
flicts as early as possible.

In both modes, the last change set of a transaction is sent
together with a request for a commit ordering agreement
just before committing the transaction. The backend must
then await the ordering decision from the GCS so that con-
flicting transactions are committed in the same order on all
nodes, which guarantees congruent commit or abort deci-

sions.

2.4.2 Logging for Persistence

Postgres uses a Write Ahead Log (WAL) which serves two
slightly different purposes. One is to make sure changes have

made it to permanent storage before confirming a trans-

action to the client, the other is taking counter-measures
against partial page writes. The WAL is very much bound to
the internal representation of the data so it cannot be used
to recover other nodes. As replication already provides ad-
ditional safety against single node failures it is not necessary
to perform logging on every node of the cluster. Instead it is
beneficial for performance and manageability to allow sep-
aration of transaction logging from transaction processing’.
Postgres-R thus provides an additional change set logging
daemon which replaces ordinary transaction logging®. Be-
fore committing a transaction the backends must not only
await an ordering decision, but also wait for confirmation

from one or more of these change set logging services.

2.5 Application of Change Sets

Upon receiving a change set from another node, the coordi-
nator checks if it belongs to a transaction which is already in
progress. In that case it gets forwarded to the helper back-
end in charge of that remote transaction. If the change set
is the first one of a new remote transaction, the coordinator
must either assign it to an idle backend or cache it until a
helper backend gets available.

The helper backends must then deserialize the changes
from the set, lookup the tuples, check for conflicts and ap-
ply changes. Dependingon the results of the conflict checks,
the transaction can either be committed at the end of change
set application or it needs to be aborted, because the GCS
decided for a conflicting transaction to take precedence.
This mechanism provides concurrent application of trans-
actions from remote nodes and works directly from binary
data, without transferring back to SQL.

2.5.1 Distributed Concurrency Control

Before committingan eagerly replicated remote transaction,
the helper backend needs to await the ordering decision
from the GCS, even if all conflict checks so far have been
fine and the change sets have been applied. The coordinator
turns the ordering decision into a list of transactions, which

must terminate before the waiting transaction can commit.

This ensures that all conflicting transactions get committed
or aborted in the same order on all nodes, even if optimistic
delivery and early application of change sets disregards this
ordering. As long as a transaction is not committed, the
changes can easily be rolled back to allow another transac-
tion to apply its change sets and commit first, as required by
the decided ordering.

While scanning for tuples to change, a helper backend
checks against all tuples with matching primary key at-
tributes - independent of their visibility. The change set car-
ries the GID of the origin transaction for the tuple to be
changed. This is compared against the origin transaction’s
GID of each tuple found, derived from the tuple's xmin
which can be converted into a GID to compare. If the GIDs
do not match the tuple can be skipped, because it belongs
to a conflicting transaction®. If no tuple matches or if the
matching tuple isn't visible, yet, the origin transaction may
still be in progress on that node. In such a case the change
for that tuple must be deferred and retried later.

Otherwise at most one tuple should match in primary
key attributes and GID. In case the tuple may be updated
the change can be applied. If the tuple has already been up-
dated, there is a conflict between the current transaction and
the one which updated the tuple (identified by the tuple's
xmax. If the conflicting transaction has already committed
it is clear that the GCS has decided to give it precedence,
thus the current transaction must be aborted with a serial-
ization error.

If the conflicting transaction is still in progress as well,

7. 'This has recently been confirmed by the Tashkent project
[EDPO06], which shows improved scalability by turning fsync off and
instead perform logging within the middle-ware, very much like pro-
posed here. Together with memory-aware load balancing as proposed
in the subsequent paper [EDZ07], the authors claim to reach super-
linear scalability with up to 16 nodes. Note however, that this mainly
applies for databases which don't fit into a single node's memory, but
which are smaller than the sum of memory available within the cluster.

8. It may still be useful to let WAL protect against torn pages due to
partial writes (with full_page_writes enabled), because that allows
anode to recover into a consistent state after a crash and then perform
partial recovery, see 2.8.4.

9. The conflict between that transaction and the current one will
be detected as soon as the old version of the same tuple is found. It's
xmax is expected to be set to the conflicting transaction'’s id.

possible ordering decisions as well as the replication lev-
els have to be taken into account. A synchronously repli-
cated transaction always takes precedence over an eagerly
replicated one, because the former ones may not be aborted
with serialization failures. In case at least one of two ea-
getly replicated transactions has received its ordering deci-
sion, the backends can determine which of the two takes
precedence. The other one must be deferred until the pre-
ceding one cither commits or aborts. If neither of the trans-
actions have received an ordering decision, the change has

to be deferred as well.

2.5.2 Constraint Checking

Ordinary constraints are checked only once by the origin
backend. All other nodes do not need to repeat such check-
ing, because they operate on the same snapshot of data and
apply the same changes. However, to ensure that foreign
key constraints are respected, all applying nodes check for
referenced tuples during change set application. To ensure
the referenced tuple is valid when applying a remote transac-
tion, the helper backend acquires the necessary shared lock
during change set application. This eliminates the need to
include primary key attribute information for referenced tu-
ples in change sets, while still guaranteeing consistency with

regard to conflicts on foreign key constraints.

2.5.3 Conflict resolution

In Postgres-R a conflict is normally solved by aborting a
transaction with a serialization failure, cither for a single
command (synchronous) or just before committing (eager).
This requires the application to retry the transaction to cope
with these failures. For applications using the serializable
isolation level such a retry loop should be common prac-
tice anyway, other applications might need to be adjusted
to handle these situations.

To reduce the number of serialization failures, automatic
conflict resolution function (CRF) may be used to automat-
ically solve conflicts by merging changes for columns with

meanings. However, these functions must satisfy associa-

tivity, because in case of a conflict Postgres-R executes them
in different orders on different nodes expecting the result to
be the same. The following trivial but useful CRF are pro-

vided: textttsum, textetproduct, textttmin and textttmax.

2.5.4 Read-Only Nodes

Another method to reduce or eliminate conflicts is to limit
writing transactions to only few nodes or even only one, just
like for master-slave replication. The GCS ideally adjusts to
the situation of having only few writer nodes, so that the
writing performance is independent of the read-only nodes.

Unlike most master-slave solutions, Postgres-R does not
block write access to the database on any node, except on
failure conditions. We consider the host base access control

provided by Postgres to be sufficient for that purpose.

2.5.5 Deadlocks between Backends

Postgres features a deadlock detection mechanism which
is capable of resolving deadlocks between multiple transac-
tions by aborting one of them. When using only eagerly
replicated transactions, such deadlocks can only occur be-
tween local transactions. But using synchronously repli-
cated transactions might lead to deadlocks between local
and remote transactions. In such a case the GCS needs to be
queried to decide on a transaction to abort, so that all nodes

congruently continue with the same set of transactions.

2.5.6 Transaction Rollback and Node Failures

Eagerly replicated transactions which have not sent a change
set can be aborted and rolled back locally without any effect
on remote nodes. However, all other transactions need to
inform the remote nodes upon rollback so they can release

the associated resources and locks.

2.6 Distributed Locking

Transactions using the eager replication level do not ex-
change any locking information. Instead they optimisti-
cally assume that conflicts with other transactions are rare

and locks can be granted most of the time. The overall

cost for retrying conflicting transactions is expected to be
lower than the cost for exchanging locking information be-
tween the nodes. Explicit table level locking is not repli-
cated (ACCESS SHARE and ROW SHARE) or not al-
lowed (ROW EXCLUSIVE, SHARE UPDATE EXCLU-
SIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLU-
SIVE and ACCESS EXCLUSIVE) for such transactions.

In synchronous replication level Postgres-R transfers
locking information between the backends. This approach
is known to scale with the number of concurrent transac-
tions, which is not feasible for general purpose usage as
shown by [GHOS96]. However, certain transactions or
DDL operations are better performed with this kind of
pessimistic locking, because conflicts are expected to occur
frequently. The following two sections cover synchronous
replication exclusively.

2.6.1 Locking agreements

Every locking operation requires a cluster wide agreement
on which node%is next to acquire a certain lock. In case two
or more nodes concurrently claim a lock, the GCS decides
on an ordering in which to grant the lock to the requesting
nodes. Unlocking only requires a reliable multi-cast mes-
sage to be sent, to allow all other nodes to continue to grant
the lock in the agreed ordering.

In case of a node failure, the remaining nodes release the
locks when aborting the failed node's remote transactions.
Also note that unlike two phase commit architectures, this
locking scheme does not require confirmation from every
node, but just an agreement from the GCS. Depending on
the GCS and its configuration that means awaiting a mes-

sage from a majority of nodes or even less.

2.6.2 Representation of Locks

In synchronous replication mode all operations acquiring a
row level lock generate a normal change set, which includes
the primary key attributes of the tuple to be locked. To avoid
duplication of transmitted data, the request for a locking

agreement only needs to refer to that change set (and should

be sent together with it). As already mentioned in 2.4.1, the
transaction processing backend must await the ordering de-
cision and make sure to acquire the requested lock only after
all preceding transactions have released the lock.

Table level and advisory locks are not covered by change
sets. Instead these are serialized separately. They consist of a

lock type and a GOI or advisory lock identifiers.

2.7 Replication of Meta Data

Postgres stores the data definition in so called system cata-
logs. These contain information about the structure of the
data (number and names of databases, relations, attributes,
views, etc.), configuration settings as well as statistics for the
contained databases. Postgres-R does not replicate object
identifiers (OID) because those are considered an imple-
mentation detail of the Postgres version and may differ be-
tween the nodes of a Postgres-R cluster.

However, all of the data structure information is repli-
cated as well as all custom aggregates, operators, casts, con-
versions, enums, languages and functions. This includes the
vast majority of system catalogs, which need to be repli-
cated. However, note that system objects with OIDs lower
than FirstNormalObjectId are provided by Postgres
for every node indepentently and are thus not replicated.
See also 2.8.2.

Entity dependency information (in pg-depend and
pg-shdepend) is maintained separately on each node. So
are the storage implementation relations for large objects
and toasted data (pg_largeobject and pg_toast_x).
Tablespaces and autovacuum settings are considered per-

node configuration and are not replicated either.

2.7.1 Sequences

Unlike relational data, sequences do not underly an MVCC
mechanism in Postgres. Instead they are updated immedi-

ately and cannot be rolled back. To achieve the same behav-

10. For simplicity, we only consider nodes here, but in fact the trans-
actions on the nodes are requesting the locks, so the agreement is
about an ordering between these transactions, which may (or may not)
originate from different nodes.

ior on a distributed database system, Postgres-R thus per-
forms a sequence increment via the GCS by requesting an
agreement on which node gets the next value from a se-
quence, similar to locking. Setting a sequence to a specific
value is treated similarly and the GCS must decide on an or-
dering of these operations for all nodes. As with relational
data, performing sequence increment and assignment oper-
ations in the same order guarantees consistent sequence val-
ues.

As this requires a relatively expensive agreement round
for every value from a sequence, Postgres-R also supports
pre-assigning and caching of values from a sequence, very
much like already implemented in Postgres on a per back-
end basis. This can greatly reduce the messaging overhead,
butleads to "holes” or seemingly random sequence numbers.
That happens as well during normal operation due to rolled-
back transactions and most applications cope with it just
fine. So this is a worthwhile optimization for the vast ma-

jority of use cases of sequences.

2.7.2 DataDefinition Changes

While most changes of the data definition are irrelevant for
the replication system, there are some exceptions which af-
fect change set collection and application. When adding
columns to a relation, the change set needs to hold one more
attribute per tuple of the relation. If such a change is dis-
covered by a concurrently running transaction during col-
lection of changes, the current change set is finished and
multi-casted, then a new one with more attributes per tu-
ple is created for the relation in question. As attributes are
referenced by their position in the relation, neither renam-
ing nor dropping of a column has an effect on change set
collection.

As Postgres-R can only replicate tables with primary keys
it's not possible to drop the primary key of a relation without
adding a new one within the same transaction. To prevent
confusion between change sets addressing tuples based on
different primary keys, all concurrently writing transactions

which are using that primary key are blocked or aborted. Al-

tering the primary key constraint of a relation is rare enough
to not be worth further optimization.

Creation of new relations as well as dropping of existing
ones is covered by ordinary Postgres relation locks. Thanks
to the GOl abstraction, renaming of relations doesn't affect

replication.

2.7.3 Two-Phase Commit

A frequent use case of Two-Phase Commit (2PC) is to im-
plement replication in the application or in a middleware.
While this is covered by Postgres-R, there are other use cases
for 2PC and it is a standard SQL feature. Postgres-R thus
supports preparation of a transaction on one node and ac-
cepting commit or abort commands from another node. In-
dependent of the transaction replication level the final com-
mit ordering request of every transaction thus includes a
flag to mark a prepared transaction and possibly carries a
transaction_id string from the PREPRAE statement.
All nodes must then store the prepared transaction so that
any one of them can later on commit or abort the prepared

transaction.

2.7.4 User-Defined Functions (UDFs)

Many user defined functions are written in script languages
which are portable to different architectures. However, the
interpreter for the language itself must be available on all
nodes to support the UDF. These interpreters as well as pre-
compiled UDFs are linked into Postgres from dynamically
loadable module. To ensure a replicated UDF can be exe-
cuted on all nodes Postgres-R checks for the loadable mod-
ule and only allows creation of a language or UDF if the
required module is available on all nodes. Newly joining
nodes must be checked for the required modules and can
only participate in the replication group if they provide all

necessary modules.

2.7.5 Per Node Configuration and Maintenance

Postgres-R does not replicate per node settings and configu-

ration as those may differ between the nodes of a distributed

database for good reasons. This also applies to maintenance
tasks such as those performed by VACUUM, REINDEX
and CHECKPOINT, which should in most cases not be
done in parallel for performance reasons, but performed on
one node after another, if all nodes require the same mainte-
nance steps at all. Note that the host based access control is
considered to be part of the per node configuration as well,

even if that relies on roles of the globally shared database.

2.7.6 Event Notification

Postgres provides a non-standard event notification mech-
anism via the LISTEN and NOTIFY commands. To sup-
port notifications across nodes Postgres-R sends a reliable
multi-cast message for every notification, so that remote lis-

teners get notified as well.

2.8 Initialization and Recovery

After adding a node to a Postgres-R cluster, it needs to be
initialized with data from the cluster. For simplicity, this
process is kept similar to recovering a node after a crash or
after an intentional shutdown: first a consistent copy of a
single node's system catalogs is transferred, then the schema
on the recovering node (the subscriber) adapts its local sys-
tem catalogs accordingly and initiates the parallelized data

transfer afterwards.

2.8.1 Relation Data Transfer

To transfer the contents of a relation via a network, it must
be serialized and split into messages. As nodes may fail
any time, the recovery process must be able to continue re-
trieving data from another node. A recovery provider''in
Postgres-R thus sends chunks of serialized tuple data start-
ing from a given primary key limit, ordered by ascending pri-
mary key attributes and up to a given maximum chunk size.
This allows nodes to be initialized or recovered by request-
ing chunks from any other node and simply query another
one if the actual recovery provider fails. The serialization
of tuple data for recovery messages uses the same format as

used for inserts in change sets.

10

To ensure good parallelism (with regard to network la-
tency as well as storage requests) multiple recovery lanes
can run in parallel. This is achieved by limiting each re-
covery lane to a certain range of tuples by hashing the pri-
mary key attributes and limiting to a certain modulo, i.c.
hash(primary key attributes) mod N = X, where
N is the number of lanes and X the current lane to be limited

to.

2.8.2 Schema Adaption

Before transferring relation data, the relations themselves
need to be created. Postgres maintains all meta information
about relations in so called system catalogs, which resem-
ble ordinary tables. To unify schema adaption, a recovering
node uses the relation data transfer method outlined above
to retrieve a copy of another node's system catalogs. It can
then compare its own system catalogs to the copy and adapt
its own meta-data accordingly. This separation into trans-
mission and adaption steps simplifies the adaption, because
it doesn't need to care about network issues anymore. Note
that supporting varying Postgres major versions requires dif-
ferent adaption methods. Upon changes of the system cat-
alogs or upon failure of the recovery provider, the schema
catalog transmission is simply restarted to ensure a consis-

tent copy.

2.8.3 Change set application during recovery

To avoid long running transactions on the recovery provider
and to reduce the amount of known deprecated data to
be transmitted, Postgres-R uses MVCC during recovery as
well. In contrast to transmitting a complete snapshot and
later applying all change sets collected in between as pro-
posed for example by [LK08], this algorithm avoids having
to send lots of known deprecated data. It also relieves the

recovering node from having to cache change sets and in-

11. We talk of a recovery provider and a recovery subscriber only
during recovery. Every active node can provide recovery information
for initializing or recovering nodes. After the subscriber has com-
pleted recovery, it becomes an active node, which may then act as a
recovery provider for other nodes as well.

stead allows it to start operating immediately after the data
transmission is done. This is achieved by merging these two
stages of recovery into one by continuously applying change
sets during data transmission.

Each recovery packet is generated based on a current
snapshot, but must carry snapshot information with it (the
GID of the latest committed transaction). During recov-
ery, the subscriber retrieves and already applies changes to
already recovered tuples, but discards changes regarding tu-
ples which are not recovered, yet.

To make sure the recovery process provides these changes
in one of the forthcoming recovery packets, application of a
change set must be deferred somewhat. Due to the recovery
process going through a relation by incrementing primary
key attribute values, there are two limits to keep track of: the
primary key attributes values which mark the progress of re-
covery within a relation and the GID of the latest commit-
ted transaction covered by the recovery packets. Changes
from transactions which committed after that are not in-
cluded in the recovery packet. During the recovery process,
both of these limits possibly advance with every replication
packet received. The change set for a certain transaction
may well arrive before the first recovery packet which in-
cludes changes from that transaction. Postgres-R must en-
sure that no change falls through because its original tuple
happens to be in between both limits (slightly above the pri-
mary key limit, but the recovery packet covering it didn't
advance up to that transaction's snapshot and thus does not
include the change). This can be achieved by deferring ap-
plication of change sets until the recovery process is known
to have passed that transaction and will deliver only newer
data from that point on. This guarantees that every change
since the start of the recovery process is either included in a
recovery packet or applied from a change set.

The backend which does the application of change sets
compares against the current primary key limit of the re-
covery process. If a change targets a tuple above that limit
it can be discarded safely, because later recovery packets will
deliver the changed tuple. Otherwise it needs to be applied

or recovery has already provided the same or newer data in

11

which case the change can also be discarded.

2.8.4 Partial Node Recovery

A node which has been shut down cleanly or which can re-
cover into a consistent state after a crash by other means
(see 2.4.2) does not need to perform full data recovery. In-
stead it can do partial recovery from the last checkpoint on.
Much like regular recovery from WAL a Postgres-R node
recovers by receiving all the change sets starting from the
consistent state's checkpoint on and applying them in or-
der, before continuing with regular change set application
and serving client requests. This technique is called partial
node recovery and requires knowledge of the latest applied
transaction's GID as well as the local to global transaction
id mapping'?. Each node of a Postgres-R cluster thus saves
these upon a clean shutdown as well as with every check-
point. If the node cannot guarantee to recover into a con-

sistent state it must perform a full recovery.

2.8.5 Full Cluster Shutdown and Restart

To perform a full cluster shutdown, Postgres-R needs to en-
sure that at least a majority of the nodes have terminated and
successfully written all its changes and the above mentioned
transaction id mapping to disk. Only after that, the connec-
tion to the GCS can be closed.

During a full cluster restart the replication group is kept
inactive until at least a majority of nodes are available again.
As soon as that's the case, the group becomes active and
Postgres-R decides on a known consistent state from where
to perform partial recovery. This also works for recovering
after a full cluster crash, but requires at least one node to be

able to recover into a consistent state.

2.9 Testing

Testing of a distributed system poses some difficulties be-

cause of the many components involved. Thanks to the del-

12. That mapping of local transaction ids to global ids (GIDs) is re-
quired for conflict detection during application of change sets. During
partial recovery as well as during normal operation it gets extended by
newly applied change sets and transactions.

egation of communication issues to a GCS, Postgres-R is
very flexible and can be set up in different ways for differ-

ent needs, which also benefits testing.

2.9.1 Regression Testing

For regression testing we assume a correctly working GCS
and concentrate on Postgres-R itself. A simple emulated
group communication system (EGCS) runs on a single host
and emulates all the services of a real GCS while not hav-
ing to providing the same availability guarantees, thus being
simple and offering reproducible results.

Postgres-R allows to run multiple instances on the same
node, so regression testing does not require a full cluster.
To provide quick test results the initialization and startup
of the test databases is automated and controlled by a test
driver which guards and controls all database processes and
the EGCS.

Besides emulating the services of a GCS the emulated
group communication system is also capable of simulating
the results of various network anomalies and network fail-
ures so as to be able to test failure resilience of Postgres-R.

To test the GCS interfaces and Postgres-R in combina-
tion with the GCS it turned out to be beneficial to use vir-
tual machines with a simulated network. Automating such
a setup is harder due to having to control full systems and a
network instead of only multiple processes on a single sys-

tem.

2.9.2 Performance Testing

Simple performance testing can be done on such a virtual
cluster by varying various parameters of the simulated net-
work (like latency, throughput, drop rate, etc.). As all vir-
tual machines normally share the same physical resources,
such tests are only meaningful for exclusively network con-
strained systems, which should ideally not be the case for
Postgres-R. For more accurate performance measures the
storage subsystem as well as the CPU performance and

memory throughput needs to be taken into account as well.

12

2.10 Future Extensions

While Postgres-R is limited according to the design goals,
the following extensions are kept in mind and should be pos-
sible on the basis of Postgres-R, due to replicating indepen-
dently of the storage format and close to the database sys-
tem's internals.

2.10.1 Partial Replication and Data Partitioning

In its current design, Postgres-R is intended to replicate all
relations to all nodes in the system. This increases availabil-
ityand allows load balancing of read-only queries. However,
the overall load for writing transactions increases with every
node.

To reduce that load again when going beyond 3 or more
nodes it might make sense to partition the data between the
nodes. This allows for a compromise between availability
(due to having data duplicated on multiple nodes) and per-
formance (due to balancing the write load as well). Post-
gres already implements partitioning between table spaces
by splitting the data of a single relation into multiple rela-
tions which can then reside on different table spaces. The
data is combined and made available like a single relation
through using inheritance or custom rules.

Postgres-R could use a similar approach and spread tables
between nodes. However, to be able to combine the data
to be queried, the nodes would have to request data from
remote nodes (remote querying). For queries which involve
multiple relations, spread differently on different nodes this

casily results in lots of possible plans for how to satisfy the

query.

2.10.2 Lazy Replication

As proposed, Postgres-R provides two timing levels for
replicated transactions: synchronous and eager replication.
Both increase commit latency compared to a single node
system and are thus not appropriate for all situations. Re-
ducing the network latency could be done by deferring the
consensus round for change sets and by collecting multi-

ple change sets into a single multi-cast message. However,

this possibly results in transactions conflicting after being
committed, which violates consistency. To reach a common
consistent state again the conflict needs to be resolved some-
how. Often this is only possible by late aborting one of the
transactions, which then violates durability.

Besides the conflict detection and resolution, this would
also require Postgres-R to maintain an intermediate transac-
tion state between committed and uncommitted. Such in-
termediate state transactions are already visible on the node
they have been processed, but can still be aborted by later
reconciliation with other nodes. Also note that this cre-
ates a dependency tree of transactions which modify locally
committed data, so that late aborting one transaction pos-
sibly means having to abort several subsequent transactions
as well.

Lazy replication does not induce network dependent
commit latency and therefore provides good performance
even via high-latency networks. Even disconnected opera-
tion could be considered. However, it is even more of a re-
laxation from ACID properties with rather severe impacts

on the application.

3 Conclusion

Developing an update-everywhere database system on a
cluster of shared-nothing nodes is a challenge, but can in-
crease availability by an order of magnitude compared to
single node database systems. Postgres-R breaks the com-
plexity of multi-master replication into pieces by using an
abstraction called group communication. The additional
coordinator and worker processes are similar to other Post-
gres processes and integrate well into the existing architec-
ture. The ability to separate transaction logging enhances
flexibility and improves performance by reducing overall
disk I/O. Postgres' MVCC is not only used for conflict de-
tection during normal operation, but also to provide flexi-
bility during recovery phase. A fully synchronous replica-
tion level allows DDL to be replicated and offers a fall-back
for transactions requiring user level or special row locking,

while the eager replication level offers optimal performance

13

for update-everywhere replication.

References

[CT96]

[DSU04]

[EDP0G]

[EDZ07]

[GHOS96]

[KA00]

Chandra and Toueg. Unreliable failure detec-
tors for reliable distributed systems. JACM:
Journal of the ACM, 43, 1996.

Xavier Défago, André Schiper, and Péter
Urbdn. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM
Computing Surveys, 36(4):372--421, Decem-
ber 2004.

Sameh Elnikety, Steven Dropsho, and Fer-
nando Pedone. Tashkent: uniting dura-
bility with transaction ordering for high-
performance scalable database replication. In
In EuroSys 2006: Proceedings of the Ist Euro-
pean Conference on Computer Systems, pages

117--130. ACM Press, 2006.

Sameh Elnikety, Steven Dropsho, and Willy
Zwaenepoel. Tashkent+: Memory-aware load
balancing and update filtering in replicated
databases. In Iz EuroSys 2007: Proceedings
of the 2nd European Conference on Computer
Systems, pages 399--412, 2007.

J. N. Gray, P. Helland, P. O'Neil, and
D. Shasha.
a solution. In Proceedings of the 1996 Inter-

The dangers of replication and

national Conference on Management of Data,
pages 173--182, Montreal, Canada, 1996.
ACM-SIGMOD.

B. Kemme and G. Alonso.

be consistent: Postgres-R, a new way to im-

Don't be lazy,

plement database replication. In Proceedings
of the 26" International Conference on Very
LargeDambases (VLDB), Cairo, Egypt, 2000.

[LKOS]

[WKO5]

WeiBin Liang and Bettina Kemme. Online re-
covery in cluster databases. In Alfons Kem-
per, Patrick Valduriez, Noureddine Mouad-
dib, Jens Teubner, Mokrane Bouzeghoub,
Volker Markl, Laurent Amsaleg, and Ioana
Manolescu, editors, EDBT, volume 261 of
ACM International Conference Proceeding Se-
ries, pages 121--132. ACM, 2008.

Shuqing Wu and Bettina Kemme. Postgres-
R(SI): Combining replica control with con-
currency control based on snapshot isolation.
In ICDE, pages 422--433. IEEE Computer
Society, 2005.

14

	Design Goals
	Architecture
	Overview
	Processes on a node
	Lifecycle of a replicated transaction

	Inter-Node Communication
	Services of the Group Communication System
	 GOI
	Global transaction identifiers (GID)
	Transaction State Tracking

	 Collection of Transactional Changes
	Scope of Tuple Collection
	Time of Tuple Collection
	Representing Tuple Changes
	Representing Attribute Data

	Distributing Change Sets
	Timing and Client Confirmation
	Logging for Persistence

	Application of Change Sets
	Distributed Concurrency Control
	Constraint Checking
	Conflict resolution
	Read-Only Nodes
	Deadlocks between Backends
	Transaction Rollback and Node Failures

	Distributed Locking
	Locking agreements
	Representation of Locks

	Replication of Meta Data
	Sequences
	Data Definition Changes
	Two-Phase Commit
	UDFs
	Per Node Configuration and Maintenance
	Event Notification

	Initialization and Recovery
	Relation Data Transfer
	Schema Adaption
	Change set application during recovery
	Partial Node Recovery
	Full Cluster Shutdown and Restart

	Testing
	Regression Testing
	Performance Testing

	Future Extensions
	Partial Replication and Data Partitioning
	Lazy Replication

	Conclusion

